For $d=3$ we have for $t>0$
$$\begin{align}C(\vec r)&=\int_0^{2\pi}\int_0^\pi \int_0^\infty \frac{e^{ikr\cos(\theta)}}{t+k^2}\,k^2\sin(\theta)\,dk\,d\theta\,d\phi\\\\
&=\frac{2\pi}r \int_{-\infty}^\infty \frac{k\sin(kr)}{t+k^2}\,dk\\\\
&=\frac{2\pi}{r}\text{Im}\left(\text{PV}\int_{-\infty}^\infty \frac{ke^{ikr}}{t+k^2}\,dk\right)\\\\
&=\frac{2\pi}{r} \text{Im}\left(2\pi i \frac{i\sqrt{t}e^{-r\sqrt{t}}}{2i\sqrt{t}}\right)\\\\
&=2\pi^2\frac{ e^{-\sqrt{t} r}}{r}
\end{align}$$
Can you generlize this approach using mathematics of the $n$-Sphere?
One way to find the solution for $d=n$ is to invoke the theory of distributions. Note that in distribution, we have
$$(\Delta -t)C(\vec r)=-(2\pi)^n\delta(\vec r)$$
Then, using the result I developed in THIS ANSWER with $k\mapsto i\sqrt{t}$ and assuming a time convention $e^{-i\omega \tau}$, we find
$$C(\vec r)=(2\pi)^n\frac i4\left(\frac{i\sqrt{t}}{2\pi r}\right)^{n/2-1}H_{n/2-1}^{(1)}(i\sqrt{t}r)$$
If we wish to find the first term in the large $r$ asymptotic expanion of $C(\vec r)$, we simply use the well-known large argument asymptotic relationship
$$H_{n-1/2}^{(1)}(i\sqrt{t}r)\sim\sqrt{\frac{2}{\pi i\sqrt{t}r}}e^{-in\pi/2}e^{-\sqrt{t}r}$$
I'll leave the arithmetic to the reader.