1

Let $\mathbb{D}^2$ be the closed planar unit disk, $\mathbb{D}^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$, and let $\mathbb{S}^1$ be the boundary circle, $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 +y^2 = 1\}$.

Why $\sim$ such that $\mathbb{D}^2 / \mathbb{S}^1 = \mathbb{S}^2$?

$\mathbb{S}^2$ denotes the sphere in $\mathbb{R}^3$.

My attempt:

Define an equivalence relation $\thicksim$ whose equivalence class of a point $(x, y)$ is $\{(x,y)\}$ when $(x, y) \not\in \mathbb{S}^1$ and $(x,y) \thicksim (1,0)$ whenever $(x,y) \in \mathbb{S}^1$. Is $\mathbb{D}^2/ \sim = \mathbb{S}^2$?

Please help me.

0 Answers0