I'm solving constrained optimization exercises for preparing my final exam. I got stuck at this question.
$$ \begin{array}{ll} \text{min} & \mathbf{x}^T\mathbf{A}\mathbf{x} \\ \text{s.t.} & \|\mathbf{x}\|_2=1 \end{array} $$
I'm asked to show that, if the minimum point of the function is $\mathbf{x}^*$ in the domain, then magnitude of the smallest eigenvalue of $\mathbf{A}$ is ${\mathbf{x}^*}^T\mathbf{A}\mathbf{x}^*$.
I tried these:
$$ \begin{array}{lcll} f(\mathbf{x}) & = & \mathbf{x}^T\mathbf{A}\mathbf{x} & \qquad \text{(objective function)} \\ h(\mathbf{x}) & = & \mathbf{x}^T\mathbf{x}-1 = 0 & \qquad \text{(equality constrain)} \end{array} $$
The Lagrangian is
$$ \mathcal{L}(\mathbf{x},v) = f(\mathbf{x}) + vh(\mathbf{x}) = \mathbf{x}^T\mathbf{A}\mathbf{x} + v\mathbf{x}^T\mathbf{x} - v, $$
where $v$ is the Lagrange multiplier.
Next, I tried finding infinimum of $\mathcal{L}(\mathbf{x},v)$.
$$ \mathbf{0} = \dfrac{\partial}{\partial \mathbf{x}} \mathcal{L}(\mathbf{x},v) = \mathbf{x}^T(\mathbf{A}+\mathbf{A}^T) + 2v\mathbf{x}^T \\ (\mathbf{A} + \mathbf{A}^T)\mathbf{x}^* + 2v^*\mathbf{x}^* = \left[(\mathbf{A} + \mathbf{A}^T) + 2v^*\mathbf{I}\right]\mathbf{x}^* = \mathbf{0} \\ \implies v^*\mathbf{I} = -\dfrac{1}{2}(\mathbf{A} + \mathbf{A}^T) \qquad \text{(doesn't seem to be correct)} $$
I'm not able to go on any further. How do I find $\mathbf{x}^*$ after this point?