If $x_n<\infty, \forall \enspace n\in \mathbb{N}$ and $\lim_{n\to\infty}\sqrt[n]{x_n}=l, \enspace l>0$ , show that $\lim_{n\to\infty}\sqrt[n]{(n+1)x_{n+1}}=l$
Following is my approach:
$$\lim_{n\to\infty}\sqrt[n]{(n+1)x_{n+1}}=\left(\lim_{n\to\infty}(n+1)^{1/n}\right).\left(\lim_{n\to\infty}x_{n+1}^{1/n}\right)$$
Now $\lim_{n\to\infty}(1+n)^{1/n}=\lim_{n\to\infty}(n^{1/n})\left(1+\frac{1}{n}\right)^{1/n}=1$
I am stuck in the following step and unable to proceed further :
$$\lim_{n\to\infty}x_{n+1}^{1/n}$$
I don't have any idea how to evaluate this step.