In harmonic analysis, we have the Heisenberg uncertainty principle, i.e.
Suppose $f\in\mathcal{S}(\mathbb{R})$, which satisfies the normalizing condition $\int_{\mathbb{R}}|f(x)|^2dx=1$, then $$\left(\int_{\mathbb{R}}x^2 |f(x)|^2 dx \right)\left(\int_{\mathbb{R}}\xi^2 |\hat{f}(\xi)|^2 d\xi \right)\geq \frac{1}{(4\pi) ^2}.$$ Where $\hat f(\xi)=\int_{\mathbb{R}}f(x)e^{-2\pi i x \xi}dx.$
And this formula can be generalized to $n$-dimension:
Suppose $f\in\mathcal{S}(\mathbb{R}^n)$, which satisfies the normalizing condition $\int_{\mathbb{R}^n}|f(x)|^2dx=1$, then $$\left(\int_{\mathbb{R}^n}|x|^2 |f(x)|^2 dx \right)\left(\int_{\mathbb{R}^n}|\xi|^2 |\hat{f}(\xi)|^2 d\xi \right)\geq \frac{n^2}{(4\pi) ^2}.$$ Where $\hat f(\xi)=\int_{\mathbb{R}^n}f(x)e^{-2\pi i x\cdot\xi}dx.$
Since we still have $$\left(\int_{\mathbb{R}^n}x_i^2 |f(x)|^2 dx \right)\left(\int_{\mathbb{R}^n}\xi_i^2 |\hat{f}(x)|^2 dx \right)\geq \frac{1}{(4\pi) ^2}.$$ Then, we derive the generalized inequality by using the Cauchy-Schwartz inequality.
And the equalities can be achieved: Consider the Gaussian distribution function and adjust the coefficients suitably.
Now, I am looking for a sequence of functions $\{f_k\}_{k\geq 1}\subset \mathcal{S}(\mathbb{R}^n)$, each $f_{k}$ satisfies the normalizing condition, but for $i\neq j$, we have $$\left(\int_{\mathbb{R}^n}x_i^2 |f(x)|^2 dx \right)\left(\int_{\mathbb{R}^n}\xi_j^2 |\hat{f}(x)|^2 dx \right)\to 0, \quad (k\to \infty).$$ Maybe we can construct such sequence by adjusting some coefficients of the Gaussian distribution function? Any help would be appreciated.