-1

Let $F(p)=p^2+1$, where $p$ is a prime number. For what primes $p_1$, $p_2$ does $p_2$ divide $F(p_1)$ and $p_1$ divide $F(p_2)$? Two examples are $\{p_1,p_2\}=\{5,13\}$, and $\{p_1,p_2\} = \{89,233\}$. Are there other pairs that have this property?

1 Answers1

1

ADDED: Eric Towers found an additional two pair of primes. Numbered as my computer output below, they are

===========================

218:  529892711006095621792039556787784670197112759029534506620905162834769955134424689676262369 P 
219:  1387277127804783827114186103186246392258450358171783690079918032136025225954602593712568353 P

287: 36684474316080978061473613646275630451100586901195229815270242868417768061193560857904335017879540515228143777781065869 P 288: 96041200618922553823942883360924865026104917411877067816822264789029014378308478864192589084185254331637646183008074629 P

++======================

no opinion on prime $x,y.$

We have integers $(1+x^2)/ y$ and $(1+y^2)/x.$ We see that both $x,y$ divide $1 + x^2 + y^2.$ In turn, this says that $\gcd(x,y)=1;$ if a prime $p | x$ and $p | y,$ then $p|1$ which is a contradiction.

We have reached $xy | 1 + x^2 + y^2 $ in positive integers.

It follows that $$ 3xy = x^2 + y^2 + 1 $$
This is Problem 2 in Yimin Ge See also https://en.wikipedia.org/wiki/Vieta_jumping#Constant_descent_Vieta_jumping

So, positive integers with $$ \color{blue}{ x^2 - 3xy + y^2 = -1 } $$

There are concrete ways to find all integer pairs with $x^2 - 3xy + y^2 = -1.$ In particular, with fixed target $-1,$ there is just a single orbit of pairs...

I probably should not have numbered the lines below. Beginning with 1,1, these are $x_{n+2} = 3 x_{n+1} - x_n$


Thu Dec  2 17:21:56 PST 2021

4 2 P 5 5 P 6 13 P 7 34 8 89 P 9 233 P 10 610 11 1597 P 12 4181 13 10946 14 28657 P 15 75025 16 196418 17 514229 P 18 1346269 19 3524578 20 9227465 21 24157817 22 63245986 23 165580141 24 433494437 P 25 1134903170 26 2971215073 P 27 7778742049 28 20365011074 29 53316291173 30 139583862445 31 365435296162 32 956722026041 33 2504730781961 34 6557470319842 35 17167680177565 36 44945570212853 37 117669030460994 38 308061521170129 39 806515533049393 40 2111485077978050 41 5527939700884757 42 14472334024676221 43 37889062373143906 44 99194853094755497 P 45 259695496911122585 46 679891637638612258 47 1779979416004714189 48 4660046610375530309 49 12200160415121876738 50 31940434634990099905 51 83621143489848422977 52 218922995834555169026 53 573147844013817084101 54 1500520536206896083277 55 3928413764606871165730 56 10284720757613717413913 57 26925748508234281076009 58 70492524767089125814114 59 184551825793033096366333 60 483162952612010163284885 61 1264937032042997393488322 62 3311648143516982017180081 63 8670007398507948658051921 64 22698374052006863956975682 65 59425114757512643212875125 66 155576970220531065681649693 67 407305795904080553832073954 68 1066340417491710595814572169 P 69 2791715456571051233611642553 70 7308805952221443105020355490 71 19134702400093278081449423917 P 72 50095301248058391139327916261 73 131151201344081895336534324866 74 343358302784187294870275058337 75 898923707008479989274290850145 76 2353412818241252672952597492098 77 6161314747715278029583501626149 78 16130531424904581415797907386349 79 42230279526998466217810220532898 80 110560307156090817237632754212345 81 289450641941273985495088042104137 82 757791618667731139247631372100066 83 1983924214061919432247806074196061 84 5193981023518027157495786850488117 85 13598018856492162040239554477268290 86 35600075545958458963222876581316753 87 93202207781383214849429075266681969 88 244006547798191185585064349218729154 89 638817435613190341905763972389505493 90 1672445759041379840132227567949787325 91 4378519841510949178490918731459856482 92 11463113765491467695340528626429782121 93 30010821454963453907530667147829489881 94 78569350599398894027251472817058687522 95 205697230343233228174223751303346572685 96 538522340430300790495419781092981030533 97 1409869790947669143312035591975596518914 98 3691087032412706639440686994833808526209 99 9663391306290450775010025392525829059713 100 25299086886458645685589389182743678652930 101 66233869353085486281758142155705206899077 102 173402521172797813159685037284371942044301 103 453973694165307953197296969697410619233826


Next Day. Here is my proof that $\frac{1+x^2 + y^2}{xy}$ must equal $3.$

LEMMA

Given integers $$ m > 0, \; \; M > m+2, $$ there are no integers $x,y$ with $$ x^2 - Mxy + y^2 = -m. $$

PROOF

Calculus: $m+2 > \sqrt{4m+4},$ since $(m+2)^2 = m^2 + 4m + 4,$ while $\left( \sqrt{4m+4} \right)^2 = 4m + 4.$ Therefore also $$ M > \sqrt{4m+4} $$

We cannot have $xy < 0,$ as then $x^2 - M xy + y^2 \geq 2 + M > 0. $ It is also impossible to have $x=0$ or $y=0.$ From now on we take integers $x,y > 0.$

With $x^2 - Mxy + y^2 < 0,$ we get $0 < x^2 < Mxy - y^2 = y(Mx - y),$ so that $Mx - y > 0$ and $y < Mx.$ We also get $x < My.$

The point on the hyperbola $ x^2 - Mxy + y^2 = -m $ has both coordinates $x=y=t$ with $(2-M) t^2 = -m,$ $(M-2)t^2 = m,$ and $$ t^2 = \frac{m}{M-2}. $$ We demanded $M > m+2$ so $M-2 > m,$ therefore $t < 1.$ More important than first appears, that this point is inside the unit square.

We now begin to use the viewpoint of Hurwitz (1907). All elementary, but probably not familiar. We are going to find integer solutions that minimize $x+y.$ If $2 y > M x,$ then $y > Mx-y.$ Therefore, when Vieta jumping, the new solution given by $$ (x,y) \mapsto (Mx - y, x) $$ gives a smaller $x+y$ value. Or, if $2x > My,$ $$ (x,y) \mapsto (y, My - x) $$ gives a smaller $x+y$ value. We already established that we are guaranteed $My-x, Mx-y > 0.$

Therefore, if there are any integer solutions, the minimum of $x+y$ occurs under the Hurwitz conditions for a fundamental solution (Grundlosung), namely $$ 2y \leq Mx \; \; \; \; \mbox{AND} \; \; \; \; 2 x \leq My. $$ We now just fiddle with calculus type stuff, that along the hyperbola arc bounded by the Hurwitz inequalities, either $x < 1$ or $y < 1,$ so that there cannot be any integer lattice points along the arc. We have already shown that the middle point of the arc lies at $(t,t)$ with $t < 1.$ We just need to confirm that the boundary points also have either small $x$ or small $y.$ Given $y = Mx/2,$ with $$ x^2 - Mxy + y^2 = -m $$ becomes $$ x^2 - \frac{M^2}{2} x^2 + \frac{M^2}{4} x^2 = -m, $$ $$ x^2 \left( 1 - \frac{M^2}{4} \right) = -m $$ $$ x^2 = \frac{-m}{1 - \frac{M^2}{4}} = \frac{m}{ \frac{M^2}{4} - 1} = \frac{4m}{M^2 - 4}. $$ We already confirmed that $ M > \sqrt{4m+4}, $ so $M^2 > 4m+4$ and $M^2 - 4 > 4m.$ As a result, $ \frac{4m}{M^2 - 4} < 1.$ The intersection of the hyperbola with the Hurwitz boundary line $2y = Mx$ gives a point with $x < 1.$ Between this and the arc middle point, we always have $x < 1,$ so no integer points. Between the arc middle point and the other boundary point, we always have $y < 1.$ All together, there are no integer points in the bounded arc. There are no Hurwitz fundamental solutions. Therefore, there are no integer solutions at all.

Will Jagy
  • 146,052
  • 1
    Your line numbering suggests you have $x_n$ on the line numbered $n$. This means your initial conditions are $x_2 = x_3 = 1$. With that numbering, the next consecutive pairs of primes are ${x_{218}, x_{219}}$ and ${x_{287}, x_{288}}$. There doesn't seem to be another pair with $n <1400$. Letting code continue to run... – Eric Towers Dec 03 '21 at 03:05
  • 1
    @EricTowers thanks, I wondered. I think my computyer should be alright up to line 300... I get your two pair. Very nice. – Will Jagy Dec 03 '21 at 03:07
  • 1
    From https://oeis.org/A001519 : "The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j^2 and j divides 1+i^2. In fact, the pairs (a(n),a(n+1)), n > 0, are all the solutions. - Tomohiro Yamada, Dec 23 2018" – Barry Cipra Dec 03 '21 at 13:09
  • @BarryCipra, yes, that's it. My proof that $\frac{1+x^2+y^2}{xy}$ must be 3 is at http://math.stackexchange.com/questions/2188567/showing-that-m2-n21-is-a-square/2193944#2193944 I generalized a bit, for integer $m > 0$ and $M \geq m+3,$ there are no integer solutions to $x^2 - Mxy + y^2 = -m$ – Will Jagy Dec 03 '21 at 17:46
  • @BarryCipra it is also Problem 2 in http://georgmohr.dk/tr/tr09taltvieta.pdf – Will Jagy Dec 03 '21 at 18:10
  • Thanks for all. I thought its will be some silly (but interest) couples. I thought that such numbers will be very rare.I Didnt thought its related to Fibonacci numbers or like that. Now i must search only for consecutive primes in A001519. Thanks for all again – rooh byda Dec 05 '21 at 00:19