Calculate Maclaurin series of $\sinh^{-1}(x)$
Using the formula $$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3...$$
The derivatives are as follows: $$f'(x) = \frac{1}{\sqrt{1-x^2}}, f''(x) = \frac{(3 x^2)}{(1 - x^2)^{5/2}} + \frac{1}{(1 - x^2)^{3/2}}, f'''(x) = \frac{(9 x)}{(1 - x^2)^{5/2}} + \frac{(15 x^3)}{(1 - x^2)^{7/2}}$$
Plugging in $0$ I get the following: $f(0)=0, f'(0) = 1, f''(0)=1, f'''(0) = 0$
$$\implies f(0) = 0 + x + \frac{x^2}{2!}+0 \cdots$$
However when I use the binomial expansion and integrate It produces different results. How do I get this by the Maclaurin series?