Show $\sum_{k=0}^{n} {2k \choose k}{2(n-k) \choose n-k} = 4^n$.
I use the fact ${2n \choose n} = (-4)^n {- \frac{1}{2} \choose n} = (4)^n {n- \frac{1}{2} \choose n}$ to reduce the sum to $4^n \sum_{k=0}^{n} {k- \frac{1}{2} \choose k} {n-k- \frac{1}{2} \choose n-k}$ which is equal to $4^n {n-1 \choose n}$ using vandermonde's identity which states ${a+b \choose n} = \sum_{k=0}^{n} {a \choose k}{b \choose n-k}$.
Where am I going wrong?