Question:
Consider the following heat system with $U\subset\mathbb{R}^n $ open and bounded $$\left\{\begin{array}{l} u_{t}-\Delta u=f(x,t), x \in U, t>0, \\ u+a\frac{\partial u}{\partial \nu}=0 \space\text{on}\space\partial U,\\ u(x, 0)=g(x), x \in U. \end{array}\right.$$
where $ν$ is the outward unit normal to the boundary. Suppose that $a(x)\ge0$ for any $x\in\partial U$ $(\text{recall that } \frac{\partial u}{\partial ν} := \nabla u\cdot v)$. Use the energy method to show that there is at most one solution $u\in C^{2}_{1}(U\times(0,\infty)) \cup C(U \times[0, \infty))$ to the above system.
My attempt
$$\text{Suppose } \alpha,\beta\text{ are solutions. Let }\gamma=\alpha-\beta.$$
$$\left\{\begin{array}{l} \gamma_{t}-\Delta \gamma=f(x,t), x \in U, t>0, \\ \gamma+a\frac{\partial \gamma}{\partial v}=0 \space\text{on}\space\partial U,\\ \gamma(x, 0)=g(x), x \in U. \end{array}\right. $$
$$\text{Let: } E(t)=\int_U \gamma^2(t)dx\ge0;\space E(0)=\int_U (g(x))^2dx$$
$$\Rightarrow E'(t)=2\int_U \gamma\cdot\gamma_tdx=2\int_U\gamma\cdot\Delta\gamma dx =-2\int|\nabla\gamma|^2dx+2\int_{\partial U}\gamma\cdot\frac{\partial\gamma}{\partial v}dS(x)$$ $$=-2\int|\nabla\gamma|^2dx-2\int_{\partial U}\frac{\gamma ^2}{a}dS(x)\le0.\quad \Rightarrow 0\le E(t)\le 0 \space\therefore\text{ by Sandwich Principle } E(t)=0$$
$$\Rightarrow \gamma=\alpha-\beta=0 \Rightarrow \alpha=\beta \space\therefore\text{ there must be one solution.}$$
Help!
Feel like this is pure waffle. Any alternative solutions or help would be wonderful :)