Now I have a $N\times N$ matrix $H$ in hand, which takes this form:
$$
{
\begin{pmatrix}
0 & a & a & a &... & a \\
b & 0 & a & a &... & a \\
b & b & 0 & a &... & a \\
\vdots & & & & \ddots & \vdots\\
b & b & b & b &... & 0 \\
\end{pmatrix}}_{N\times N}
$$
It's upper triangle only contains element $a$ and lower triangular contains $b$, where both $a$ and $b$ are real and $a\ne b$. I'm trying to solve this eigen function
$$
H\boldsymbol{X}(\lambda)=\lambda\boldsymbol{X}(\lambda),
$$
where $\boldsymbol{X}(\lambda)=\left(x_1(\lambda),x_2(\lambda),...,x_N(\lambda)\right)^T$. Now I've already known that all the eigenstates $\boldsymbol{X}(\lambda)$ decay exponentially, so I can give a guess about the expression of $\boldsymbol{X}(\lambda)$, i.e.,
$$
\boldsymbol{X}(\lambda) = \left(\beta(\lambda),\beta(\lambda)^2,...,\beta(\lambda)^N\right)^T.
$$
Now inserting this guess solution into eigen function gives:
$$
\begin{pmatrix}
-\lambda & a & a & a &... & a \\
b & -\lambda & a & a &... & a \\
b & b & -\lambda & a &... & a \\
\vdots & & & & \ddots & \vdots\\
b & b & b & b &... & -\lambda \\
\end{pmatrix}
\begin{pmatrix}
\beta(\lambda) \\
\beta(\lambda)^2 \\
\beta(\lambda)^3 \\
\vdots \\
\beta(\lambda)^N
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0 \\
\vdots \\
0
\end{pmatrix}.
$$
My question is: Is it possible to give the explicit expresstion of $\beta$ written with $\beta(a,b,\lambda,N)$?
Update 1: Given $(a,b)$ and order $N$, I can numerically verify that the decay length satisfies the relation$$\left|\beta(\lambda_1)\right|=\left|\beta(\lambda_2)\right|=...=\left|\beta(\lambda_N)\right|$$and$$\left|\beta(\lambda)\right|\propto\frac{1}{N}$$
Asked
Active
Viewed 123 times
2
Rodrigo de Azevedo
- 23,223
Guoqing
- 155
-
1Have you tried using recursion? Take a look at this. – Rodrigo de Azevedo Nov 29 '21 at 11:21
-
@RodrigodeAzevedo. Thanks for comment. I'll take a look at the recursion method and update my question once I make a progress. – Guoqing Nov 30 '21 at 13:20