Let $C[0, 1]$ be the linear space of all continuous functions on the interval $[0, 1]$ equipped with the norm $||f|| = max_{0≤x≤1}|f(x)|$. Define the operator $$T : C[0, 1] → C[0, 1]$$ by $$T f(x) = \int^ x_0f(s) ds$$. Show that $T$ is bounded and find its norm $||T||$.
Proof:
$||Tf||=||\int_0^x f(s)ds||=max_{0≤x≤1}|\int_0^x f(s)ds|\leq max_{0≤x≤1}\int_0^x |f(s)|ds\leq\int_0^1 max_{0≤s≤1}|f(s)|ds = \int_0^1 ||f||ds=||f||$
$||T||=sup_{f\neq0}\frac{||Tf||}{||f||}=...$
I am not sure if the part $||Tf||\leq ||f||$ if correct. If this is correct, how to pick $f$ to prove $||Tf||\geq ||f||$?