- The set $S$ of smooth random variables is the set of random variables $F : \Omega \rightarrow \mathbb R$ such that there exist a function $f$ in $ \mathcal C_p^{\infty}(\mathbb R^n)$ (for some $n \geq 1$) and elements $h_1, \cdots , h_n$ of $L^2$ such that
$$F = f\left((\int_0^t h_1\, dW_s), \cdots , (\int_0^t h_n\,dW_s)\right) \qquad (*)$$
- The set $\mathcal P$ denotes the set of random variables of the form (*) where $f$ is a polynomial.
- $S_b$ (resp. $S_0$) denotes the space of random variables of the form (*) with $f$ in $ \mathcal C_p^{\infty}(\mathbb R^n)$ (resp. $ \mathcal C_0^{\infty}(\mathbb R^n)$ ).
We define the Malliavin derivative $DF$ of $F$ as the $L^2$-valued random variable $$DF =\sum_{i=1}^n \frac{\partial f}{\partial x_i}f\left((\int_0^t h_1\, dW_s), \cdots , (\int_0^t h_n\,dW_s)\right)h_i.$$
- Integration by part formula: Let $F$ be a smooth random variable of the form (*) and let $h$ be an element of $L^2$. The integration by parts formula say that
$$\mathbb E[\langle DF, h\rangle_{L^2}] = \mathbb E[F(\int_0^t h\, dW_s)] \qquad (**).$$
By normalization the relation (**) we can assume that $||h||_{L^2} = 1$ and $F = f\left((\int_0^t e_1\, dW_s), \cdots , (\int_0^t e_n\,dW_s)\right) $ where $\{e_1, \cdots , e_n\}$ are ONB in $L^2$ , $e_1 = h$ and $f \in \mathcal C_p^{\infty}(\mathbb R^n)$ We have that
\begin{align} \mathbb E\left[\langle DF, h\rangle_{L^2}\right] =& \mathbb E \left[ \frac{d}{dx_1}f\left((\int_0^t e_1\, dW_s), \cdots , (\int_0^t e_n\,dW_s)\right)\right] \tag{A}\\ =& (2π)^{−n}\int_{\mathbb R^n}\frac{d}{dx_1}f(x_1, \cdots , x_n) \exp\left(-\frac{1}{2}\sum_{i=1}^nx_i^2\right)\,dx_1 · · · dx_n \tag{B} \\ =& (2π)^{−n}\int_{\mathbb R^n} x_1f(x_1, \cdots , x_n) \exp\left(-\frac{1}{2}\sum_{i=1}^nx_i^2\right)\,dx_1 · · · dx_n \tag{C} \\ =& \mathbb E[FW(e_1)] \tag{D}\\ =& \mathbb E[FW(h)] . \end{align}
Question:
- In A: Because $\langle e_1,h_i\rangle=0, \quad \forall i=2, \cdots, n$ then they neglect the terms $dx_2, \cdots dx_n.$. Am'I right?
- In B: They use the PDF of the standard law normal, but why?
- In C: I don't can't develop how they use the integration by part in $\mathbb R^n$.