Calculate $\sum_{n=2}^{\infty} \frac{1}{n\ln(n)^2}$ by direct addition to 5 decimal places.
I tried to use the following: $$\int_{N+1}^{\infty} f(x)dx \le \sum_{n=N+1} a_n \le \int_{N+1} ^{\infty} f(x)dx + a_{N+1} $$
Though I'm not sure if i'm plugging the numbers in correctlty;
$$\int_{2}^{\infty}\frac{1}{x\ln(x)^2} dx\le \sum_{2}^{\infty}\frac{1}{n\ln(n)^2} \le \left(\int_2^{\infty}\frac{1}{x\ln(x)^2}dx\right) +\frac{1}{n\ln(n)^2}$$
$$\implies -\frac{1}{\ln(2)} \le \sum_{2}^{\infty}\frac{1}{n\ln(n)^2} \le-\frac{1}{\ln(2)} + \frac{1}{n\ln(n)^2}$$
I would appreciate some guidance on how to proceed from here!