Find the change-of-basis-matrix of the following ordered basis of $Pol_2(\Bbb R)$
a) $B=(x^2,x,1), B'=(a_2x^2+a_1x+a_0,b_2x^2+b_1x+b_0, c_2x^2+c_1x+c_0)$
b) $B=(1,x,x^2), B'=(a_2x^2+a_1x+a_0,b_2x^2+b_1x+b_0, c_2x^2+c_1x+c_0)$
c) $B=(x^2-x,x^2+1,x-1), B'=(5x^2-2x-1,-x^2+4x+2, 2x^2-5x-3)$
So for a) i have \begin{bmatrix}a_2&b_2&c_2\\a_1&b_1&c_1\\a_0&b_0&c_0\end{bmatrix}
for b) \begin{bmatrix}a_2x^2&b_2x^2&c_2x^2\\a_1&b_1&c_1\\0&0&0\end{bmatrix}
I will leave the third for now, (I got rubbish numbers) probably wrong....