The cup product is supercommutative, i.e the supercommutator $[-,-]$ is trivial at the cohomology level — but not at the cochain level, which allows one to produce various cohomology operations.
The simplest (in some sense) of such (integral) operations is the following «Massey cube». Suppose $a$ is an integral $k$-cocycle, $k$ is odd; $[a,a]=0\in H^{2k}$, so $[a,a]=db$ (where $b$ is some cochain); define $\langle a\rangle^3:=[a,b]\in H^{3k-1}$ (clearly this is a cocycle; it doesn’t depend on choice of $b$, since by supercommutativity $[a,b’-b]=0\in H^{3k-1}$ whenever $d(b-b’)=0$).
The question is,
why $\langle a\rangle^3$ lies in 3-torsion?
For $k=3$, for example, this is true since $H^8(K(\mathbb Z,3);\mathbb Z)=\mathbb Z/3$, but surely there should be a more direct proof? (Something like Jacobi identity, maybe?)