Without loss of generality, $f(0)=0.$ Define $F_n(x)=\int_0^xf(t^n)dt.$
Let $\epsilon>0$ and choose $0<\delta<1$ so that
$\tag1 0<x<\delta \Rightarrow |f(x)|<\epsilon$ and write
$\tag2 \int_0^1f(t^n)dt=\int_0^af(t^n)dt+\int_a^1f(t^n)dt.$
Apply the mean value theorem to find a $c_n\in (a,1)$ such that
$\tag3 F_n(1)-F_n(a)=\int_a^1f(t^n)dt=(1-a)f(c_n^n).$
Note that $f$ is bounded on $[0,1]$ so
$\tag4 (1-a)|f(c_n^n)|<M(1-a)\ \text{for some}\ M>0.$
Choose $a$ so that $M(1-a)<\epsilon$ and then choose $N$ large enough so that $a^N<\delta.$ Then, $t^n<\delta$ whenever $0<t<a$ and $n\ge N.$
Then, from $(1),(2), (3)$ and $(4),$
$\tag5 \left |\int_0^1f(t^n)dt\right|\le \left |\int_0^af(t^n)dt\right |+\left |\int_a^1f(t^n)dt\right |<\epsilon+ \epsilon=2\epsilon.$