Let $\mu$ be a measure function. I want to show that and $\mu(\lim_{n\rightarrow\infty}\sup A_n)\geq \lim_{n\rightarrow\infty}\sup\mu(A_n)$ provided that $\mu(\cup^\infty_{n=1}A_n)<\infty$.
I have already proved that $\mu(\lim_{n\rightarrow\infty}\inf A_n)\leq \lim_{n\rightarrow\infty}\inf\mu(A_n)$ from answers given here. Can I use this to prove that $\mu(\lim_{n\rightarrow\infty}\sup A_n)\geq \lim_{n\rightarrow\infty}\sup\mu(A_n)$?
Could you please give me a hint on how to start proving this.