Find the limit $$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{3^n} + {5^n}}}.$$
Thanks.
Find the limit $$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{3^n} + {5^n}}}.$$
Thanks.
I think simple inequalities give a better intuition of what's going on,
\begin{align} 5=\sqrt[n]{5^n}\leq \sqrt[n]{3^n+5^n} \leq\sqrt[n]{5^n+5^n} = 5\sqrt[n]{2} \to 5 \end{align}
We have $$ \lim_{n\rightarrow \infty}\sqrt[n]{{{3^n} + {5^n}}}=5\times\lim_{n\rightarrow \infty}\left[1+\left(\frac{3}{5}\right)^n\right]^{\frac{1}{n}}= 5.$$