Let $(E,A,\mu)$ be a measure space
And let $(f_n)_{n \in IN}$ be a sequence of integrable functions that converges to an integrable function f.
Show that :
$\int\lvert f_n - f \lvert d\mu$ $\to$ 0 $\Leftrightarrow$ $\int \lvert f_n \lvert d\mu \to \int \lvert f \lvert d\mu$
(The integrals are over E)