One possibility is the following. We write $b_{n,m} := a_{n,m} - a_{n-1,m}$ (with $a_{0,m} = 0$). Then, $a_{n,m} = \sum_{k=1}^n b_{k,m}$. Thus,
$$
\lim_{m \to \infty}\lim_{n\to\infty} a_{n,m}
=
\lim_{m \to \infty}\lim_{n\to\infty} \sum_{k=1}^n b_{k,m}
=
\lim_{m \to \infty}\sum_{k = 1}^\infty b_{k,m}.
$$
Now, you can try to apply DCT (under some restrictive assumptions on $b_{k,m}$).
If this is possible, we can continue
\begin{align}
\lim_{m \to \infty}\lim_{n\to\infty} a_{n,m}
&=
\lim_{m \to \infty}\sum_{k = 1}^\infty b_{k,m}
=
\sum_{k = 1}^\infty\lim_{m \to \infty} b_{k,m}
=
\lim_{n\to\infty}\sum_{k=1}^n \lim_{m\to\infty}b_{k,m}
=
\lim_{n\to\infty} \lim_{m\to\infty} \sum_{k=1}^n b_{k,m}
\\&=
\lim_{n\to\infty} \lim_{m\to\infty} a_{n,m}
.
\end{align}
To summarize:
Yes, it is possible, but you need different assumptions on your sequence $a_{n,m}$.