-2

What is the result of

$$ \sum_{i=1}^{\infty} \frac{1}{(2i-1)^2}$$

I feel that the answer should be obvious, but somehow I can't find it. The series $$ 1 + \frac{1}{9} + \frac{1}{25}\ ... $$ doesn't look familiar to any other 'known' sequence. So how would you proceed here?

Thanks!

bonifaz
  • 813
  • 9
  • 19

3 Answers3

2

Hint: $$\displaystyle \sum_{i=1}^\infty\frac 1 {i^2}=\frac {{\pi}^2} 6$$

mau
  • 10,176
JSCB
  • 13,698
  • 15
  • 67
  • 125
2

Hints:

$$\frac{\pi^2}6=\sum_{n=1}^\infty\frac1{n^2}=\sum_{n=1}^\infty\frac1{(2n)^2}+\sum_{n=1}^\infty\frac1{(2n-1)^2}=\frac14\sum_{n=1}^\infty\frac1{n^2}+\sum_{n=1}^\infty\frac1{(2n-1)^2}\;\ldots\ldots$$

DonAntonio
  • 214,715
2

First, assuming that you know the identity, $$S=1^2+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots=\frac{\pi^2}{6}$$

Then, $$\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}=\frac{1}{2^2}\left(1^2+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots\right)=\frac{S}{4}$$

Therefore, $$1^2+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots=S-\frac{S}{4}=\frac{3S}{4}=\frac{\pi^2}{8}$$

We could do this re-arrangement in last step since series convergent absolutely(trivial).

Aang
  • 14,920