$$ \int_0^\infty e^{-x^2}\cos(x) dx$$
I got to the following
$$\Re[\int_0^\infty e^{-(x-{i\over2})^2}.e^{1\over4}dx]$$
How I proceed further ?
$$ \int_0^\infty e^{-x^2}\cos(x) dx$$
I got to the following
$$\Re[\int_0^\infty e^{-(x-{i\over2})^2}.e^{1\over4}dx]$$
How I proceed further ?
$$\int_0^\infty e^{-x^2}\cos(x),dx=\frac12 \int_{-\infty}^\infty e^{-x^2}\cos(x),dx$$
Then, applying Euler's formula we have
$$\int_0^\infty e^{-x^2}\cos(x),dx=\frac12 \text{Re}\int_{-\infty}^\infty e^{-1/4}e^{-(x-i/2)^2},dx$$
Finally, exploiting Cauchy's integral theorem, we find that
$$\int_0^\infty e^{-x^2}\cos(x),dx=\frac12 \sqrt\pi e^{-1/4}$$
– Mark Viola Oct 10 '21 at 17:18