Prove $(\mathbb Q,+)$ is not free abelian group.
My solution:
First of all I prove $(\mathbb Q,+)$ is not finitely generated.
Suppose $\mathbb Q$ is finitely generated then exist $\langle\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},\cdots ,\frac{1}{a_n}\rangle$.
Each $q\in \mathbb Q$ is generated by $\langle\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3}, \cdots, \frac{1}{a_n}\rangle$.
Define $t=\frac{1}{a_{1}} \cdot \frac{1}{a_{2}}\cdot\cdots \cdot\frac{1}{a_{n}} = \frac{1}{a_{1} \cdot a_{2}\cdot \cdots \cdot a_{n}}.$
If we take $x = \frac{1}{t+1} = \frac{1}{(a_{1} \cdot a_{2} \cdot\cdots\cdot a_{n})+1}$ , then $x \notin \langle\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3}, \cdots, \frac{1}{a_n}\rangle.$
$(\mathbb Q,+)$ is not finitely generated.
We know free abelian group has a finite basis that generate the group, there is no finite basis, $(\mathbb Q,+)$ is not free abelian group. (Is it correct ?)
I'd be grateful for your some help!