Let $A$ a matrix of order $m \times n$ of rank $r$; so there are real numbers $\sigma_1 \geq \ldots \geq \sigma_r > 0$, a orthonormal basis $v_1, \ldots , v_n $ of $\mathbb{R}^n$ and a orthonormal basis $u_1, \ldots , u_m $ of $\mathbb{R}^m$ such that $$Av_i = \sigma_i u_i \ \ \ \text{for} \ \ \ i=1, \ldots r \ \ \ \text{and} \ \ \ Av_i =0 \ \ \text{for} \ \ \ i = r+1, \ldots ,n $$
$$A^Tu_i = \sigma_i v_i \ \ \ \text{for} \ \ \ i=1, \ldots r \ \ \ \text{and} \ \ \ A^Tu_i =0 \ \ \ \text{for} \ \ \ i = r+1, \ldots ,n .$$
The vectors $v_1, \ldots , v_n $ are autovectors of $A^TA$, $u_1, \ldots u_m$ are autovectors of $AA^T$ and $\sigma_1^2, \ldots, \sigma_1^r$ are nonzero autovalues of $A^TA$ and $AA^T$.
Proof: Let $v_1, \ldots, v_n$ a orthonormal basis of $\mathbb{R}^n$ formed by autovalues of $A^TA$ and let $\lambda_1, \ldots, \lambda_n$ the autovalues associated. We have that every autovalue of $A^TA$ is not negative.
Assume $v_1, \ldots , v_n$ ordered so that $\lambda_1 \geq \ldots \geq \lambda_n$.
How $r=rank(A)=rank(A^TA)$, we have that $$ \lambda_1 >0, \ldots ,\lambda_r>0 \ \ \ \text{and } \ \ \ \lambda_{r+1}= \ldots = \lambda_n=0.$$
For $i=1, \ldots r$, we define $$ \sigma_i = \Vert Av_i \Vert_2 \ \ \ \text{and} \ \ \ u_i = \frac{1}{\sigma_i}Av_i.$$ These conditions imply that
$$ Av_i = \sigma_i u_i, \ \ \ \text{and} \ \ \ \Vert u_i \Vert_2 = 1 \ \ \ \text{and} \ \ \ \sigma_i^2= \lambda_i, $$ for $i=1, \ldots, r$.
Now my question: Why the next equality is true?
If $\lambda_i = 0$, for $i= r+1, \ldots, n$, so
$$Av_i = \lambda_i v_i = 0v_i = 0.$$
I am sorry for my english.