How to show $||A^k||$ $\leq$ $||A||^k$ where $A\in \mathbb R^{n\times n}$ and $k \in \Bbb Z^+$?
I want to start with $||A^k||=\max||A^kx||$ and $||A||^k=(\max||Ax||)^k$, and then multiply by the $\frac{1}{k}$-th power on both side, but I don't know what to do next.