Let $R=R_0 \oplus R_1 \oplus \cdots$ and $S=S_0 \oplus S_1 \oplus \cdots$ be finitely generated graded rings with $R_0 \not\cong S_0$. If there exists a positive integer $n$ such that $R_d \cong S_d$ for all $d \ge n$, then $\operatorname{Proj}R \cong \operatorname{Proj}S$?
I know the result is true if $R_0 \cong S_0$ since then the $d$th-Veronese subrings of $R$ and $S$ are isomorphic. Is this true if $R_0 \not\cong S_0$?