$P$ is an irreducible stochastic matrix. Therefore, by Perron-Frobenius theorem, $\lim_{k\to\infty}P^k=\frac{vu^T}{u^Tv}$, where $u$ and $v$ are respectively a left eigenvector and a right eigenvector of $P$ corresponding to the eigenvalue $1$. By inspection, we see that up to scaling, $v=(1,1,\ldots,1)^T$ and $u=(1,2,\ldots,n)^T$. Thus
$$
\lim_{k\to\infty}P^k=\frac{2}{n(n+1)}\pmatrix{1&2&\cdots&n\\ 1&2&\cdots&n\\ \vdots&\vdots&&\vdots\\ 1&2&\cdots&n}\tag{1}
$$
and $\lim_{k\to\infty}P^k\alpha=\frac{2(n-1)}{3}(1,1,\ldots,1)^T$.
Without using Perron-Frobenius theorem, one may consider the following matrix first:
$$
M(t,n)=\pmatrix{
&&&&-(n-1)&t+n\\
&&&-(n-2)&t+(n-1)\\
&&\cdots&\cdots\\
&-2&t+3\\
-1&t+2\\
t+1}\in\mathbb R^{n\times n}.
$$
Let $V\in\mathbb R^{n\times n}$ be the upper triangular matrix of ones. Then $V^{-1}$ is the bidiagonal matrix whose main diagonal entries are ones and whose superdiagonal entries are minus ones. By direct calculation, we get
\begin{aligned}
M(t,n)V
&=\pmatrix{
&&&&-(n-1)&t+1\\
&&&-(n-2)&t+1&t+1\\
&&\cdots&\cdots&\cdots&\cdots\\
&-2&t+1&\cdots&\cdots&t+1\\
-1&t+1&\cdots&\cdots&\cdots&t+1\\
t+1&\cdots&\cdots&\cdots&\cdots&t+1},\\
V^{-1}M(t,n)V
&=\left(\begin{array}{ccccc|c}
&&&n-2&-(t+n)&0\\
&&n-3&-(t+n-1)&0&0\\
&\cdots&\cdots&\cdots&\cdots&\cdots\\
1&-(t+3)&0&\cdots&\cdots&0\\
-(t+2)&0&\cdots&\cdots&\cdots&0\\
\hline
t+1&\cdots&\cdots&\cdots&\cdots&t+1\end{array}\right)\\
&=\pmatrix{-M(t+1,n-1)&0\\ \ast&t+1}.
\end{aligned}
So, recursively, we have
\begin{aligned}
\operatorname{spectrum}\left(M(t,n)\right)
&=\{t+1\}\cup\operatorname{spectrum}\left(-M(t+1,n-1)\right)\\
&=\{t+1,-(t+2)\}\cup\operatorname{spectrum}\left(M(t+2,n-2)\right)\\
&=\{t+1,-(t+2),t+3\}\cup\operatorname{spectrum}\left(-M(t+3,n-3)\right)\\
&\vdots\\
&=\{t+1,\,-(t+2),\,t+3,\,\ldots,\,(-1)^{n-1}(t+n)\}.\\
\end{aligned}
It follows that
\begin{aligned}
\operatorname{spectrum}(P)=\operatorname{spectrum}\left(M(0,n)^{-1}\right)
=\left\{1,\,-\frac12,\,\frac13,\,\ldots,\,\frac{(-1)^{n-1}}{n}\right\}.
\end{aligned}
Since $1$ is a simple eigenvalue and the moduli of all other eigenvalues are strictly smaller than $1$, we again conclude that $\lim_{k\to\infty}P^k=\frac{vu^T}{u^Tv}$, where $u$ and $v$ are respectively any left and right eigenvectors of $P$ corresponding to the eigenvalue $1$.