I want to know how to deduce $$ \int_0^\infty K_\nu(ax)I_\nu(bx)\cos cxdx=\frac{1}{2\sqrt{ab}}Q_{\nu-\frac12}(\frac{a^2+b^2+c^2}{2ab}) $$ My attempt:
I have evaluated $$ \int_0^\infty J_\nu(ax)J_\nu(bx)e^{-cx}dx=\frac{1}{2\sqrt{ab}}Q_{\nu-\frac12}(\frac{a^2+b^2+c^2}{2ab}) $$ Then I want to prove $$ \int_0^\infty K_\nu(ax)I_\nu(bx)\cos cxdx= \int_0^\infty J_\nu(ax)J_\nu(bx)e^{-cx}dx $$ I have tried Fourier transform, Mellin transform and series to prove the equation, but failed.
How to deduce the equation? $$ \int_0^\infty K_\nu(ax)I_\nu(bx)\cos cxdx=\frac{1}{2\sqrt{ab}}Q_{\nu-\frac12}(\frac{a^2+b^2+c^2}{2ab}) $$ or $$ \int_0^\infty K_\nu(ax)I_\nu(bx)\cos cxdx= \int_0^\infty J_\nu(ax)J_\nu(bx)e^{-cx}dx $$ Thank you for your time.