If the expectation is $E_{M,N}$ then I would have thought you have the recurrence $$E_{M,N}=1+\tfrac12 E_{M-1,N}+\tfrac12 E_{M,N-1}$$ starting at $E_{M,0}=E_{0,N}=0$. There may be an easy solution, though I do not see it. Some values for small $M,N$ are
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.000000 1.500000 1.750000 1.875000 1.937500 1.968750 1.984375
[2,] 1.500000 2.500000 3.125000 3.500000 3.718750 3.843750 3.914062
[3,] 1.750000 3.125000 4.125000 4.812500 5.265625 5.554688 5.734375
[4,] 1.875000 3.500000 4.812500 5.812500 6.539062 7.046875 7.390625
[5,] 1.937500 3.718750 5.265625 6.539062 7.539062 8.292969 8.841797
[6,] 1.968750 3.843750 5.554688 7.046875 8.292969 9.292969 10.067383
[7,] 1.984375 3.914062 5.734375 7.390625 8.841797 10.067383 11.067383
[8,] 1.992188 3.953125 5.843750 7.617188 9.229492 10.648438 11.857910
[9,] 1.996094 3.974609 5.909180 7.763184 9.496338 11.072388 12.465149
[10,] 1.998047 3.986328 5.947754 7.855469 9.675903 11.374146 12.919647
[11,] 1.999023 3.992676 5.970215 7.912842 9.794373 11.584259 13.251953
[12,] 1.999512 3.996094 5.983154 7.947998 9.871185 11.727722 13.489838
[13,] 1.999756 3.997925 5.990540 7.969269 9.920227 11.823975 13.656906
[14,] 1.999878 3.998901 5.994720 7.981995 9.951111 11.887543 13.772224
[15,] 1.999939 3.999420 5.997070 7.989532 9.970322 11.928932 13.850578
[16,] 1.999969 3.999695 5.998383 7.993958 9.982140 11.955536 13.903057
[17,] 1.999985 3.999840 5.999111 7.996534 9.989337 11.972436 13.937747
[18,] 1.999992 3.999916 5.999514 7.998024 9.993680 11.983058 13.960403
[19,] 1.999996 3.999956 5.999735 7.998879 9.996280 11.989669 13.975036
[20,] 1.999998 3.999977 5.999856 7.999368 9.997824 11.993747 13.984391
Empirically the expectation seems to be something of the form $$2N-\frac{M^{N-1}+\cdots}{2^{M+N-2} (N-1)!}$$
where $\cdots$ is a degree $N-2$ polynomial function of $M$
- when $N=1$ the $\cdots$ is $0$
- when $N=2$ the $\cdots$ is $4$
- when $N=3$ the $\cdots$ is $9M +24$
- when $N=4$ the $\cdots$ is $15M^2 +86M+192$
- when $N=5$ the $\cdots$ is $22M^3+203M^2+950M+1920$
and the $4,24,192,1920$ might be $2^{N-1}N!$