I am trying to compute the expression
$$\limsup_{n\to \infty}|n!|^\frac{1}{n}$$
My thinking is that
$$\lim_{n\to \infty}|n!^\frac{1}{n}|=\lim_{n\to \infty}n!^\frac{1}{n}=\lim_{n\to\infty}e^\frac{\log n!}{n} = e^{\lim_{n\to\infty}\frac{\log n!}{n}}$$
Then I must compute $\lim_{n\to\infty}\frac{\log n!}{n}$.
From here, I am not sure where to go. How can I compute this limit?