$$\large1+x^{\large10+\large\log x^{\large10+\large\log x^{10+\large ⋰}}}=\frac1{\log x}$$ To solve this equation I used $t=x^{\large10+\large\log x^{\large10+\large\log x^{10+\large ⋰}}}$ . LHS is equal to, $$1+t=1+x^{10+\log t}$$ $$t=x^{10+\log t}$$ $$\log t=(\log x)\times (10+\log t)$$ $$x=e^{\tfrac{\log t}{10+\log t}}$$ Hence the equation is equivalent to
$$t+1=\frac{10+\log t}{\log t}$$ $$t\log t=10$$
I'm not sure if this helps in solving the equation.