1

Let $z_1,z_2$ be distinct complex numbers such that $|z_1| = |z_2|$. Prove that $\frac{1}{2}|z_1+z_2| < |z_1|.$

What I Tried:- I tried it in 2 ways:-

First, let $z_1 = x + iy$ , $z_2 = z + iw$ .
We have, $x^2 + y^2 = z^2 + w^2$.
So, $\dfrac{1}{2}|z_1 + z_2| < |z_1|.$

$\rightarrow \dfrac{1}{2}|(x + z) + i(y + w)| < |z_1|.$ $\rightarrow \dfrac{1}{2}\sqrt{[(x + z)^2 + (y + w)^2]} < |z_1|.$
But now I am stuck.

In the next try, I squared both sides to get :-
$\rightarrow \dfrac{1}{2}|z_1 + z_2| < |z_1|$ .

$\rightarrow \dfrac{|z_1 + z_2|^2}{4} < |z_1||z_2|$.

$\rightarrow (z_1 + z_2)(\bar z_1 + \bar z_2) < 4|z_1||z_2|$.

$\rightarrow |z_1|^2 + |z_2|^2 + z_1 \bar z_2 + z_2 \bar z_1 < 4|z_1||z_2|$.
But I am still stuck.

Can someone help me? Thank You.

Anonymous
  • 4,310

1 Answers1

0

Consider, $A=|z_1+z_2|-2|z_1|$. As $|z_1|=|z_2|$, $ A=|z_1+z_2|-|z_1|-|z_2|$. We know, by triangle inequality that $|z_1|+|z_2| \gt |z_1+z_2|$. Therefore, $A \lt 0$. Hence, we are done.

Ilovemath
  • 1,237
  • 4
  • 16