1

Question: How to prove that $\mathbb{Z}^{*}_p$ is a group under multiplication operation where $p$ is prime.

Proof: We define $$\mathbb{Z}^{*}_p=\{[a] \in \mathbb{Z}_p: [a] \neq [0]\}$$

1. For well-defined: By assumption $[a] \neq [0]$ so $p| a$ thus $(a, p)=1$.

Let $[a], [b] \in \mathbb{Z}^{*}_p$. Then $$[a][b]=[ab]=[0]$$

$$ab \equiv 0\pmod{p}$$

so, $$ p|ab$$ since $(a, p)=1$ and $p|a$. This contradicts to the assumption that $[b] \neq [0]$ thus $[ab] \neq [0]$ therefore $[ab] \in \mathbb{Z}^{*}_p$

  1. Associative law Let $[a], [b], [c] \in \mathbb{Z}^{*}_p$. Then $$[a]([b][c])=([a][b])[c]$$

  2. Identity Element

  3. Inverse Element

How to check associativity, identity and inverse so that $\mathbb{Z}^{*}_p$ forms a group under multiplication operation.

  • $$[a][1]=[a]=[1][a]$$ $$[a][1]=[a1]=[a]$$ $$[1][a]=[1a]=[a]$$
  • – waseem bughio Aug 31 '21 at 17:27
  • Bézout's Identity: for some $a, b \in \mathbb{Z}$ s.t $$an+bp=1=gcd(n, p).$$
  • – waseem bughio Aug 31 '21 at 17:31