To solve the problem there a couple of ways that you solve the problem:
\begin{align}
\require{cancel}
x(\theta)&=2\cos(\theta)-\cos(2\theta)\\
y(\theta)&=2\sin(\theta)-\sin(2\theta)\\
\frac{dx}{d\theta}&=-2\sin(\theta)+2\sin(2\theta)\\
\frac{dy}{d\theta}&=2\cos(\theta)-2\cos(2\theta)\\
\frac{dy}{dx}&=\frac{dy}{\cancel{d\theta}}\times\frac{\cancel{d\theta}}{dx}=\frac{2\cos(\theta)-2\cos(2\theta)}{-2\sin(\theta)+2\sin(2\theta)}
\end{align}
Resulting in the following:
\begin{align}
\frac{d^2y}{dx^2}&=\frac{d}{d\theta}\frac{dy}{dx}\times\frac{d\theta}{dx} \\ \frac{d^2y}{dx^2}&=\frac{((-2\sin(\theta)+2\sin(2\theta))(-2\sin(\theta)+4\sin(2\theta))-((2\cos(\theta)-2\cos(2\theta))(-2\cos(\theta)+4\cos(2\theta)))}{(-2\sin(\theta)+2\sin(2\theta))^3}
\end{align}
$$\frac{d^2y}{dx^2}\Bigg\vert_{\theta=\frac{\theta}2}=-\frac{3}2$$