Let $h : \mathbb{R} \to \mathbb{R}$ be a continious function.Define $\Gamma(h) =\{ (a,b) \in \mathbb{R}\times \mathbb{R} : b=h(a)\}$
My question: Is $\Gamma(h) $ closed in $\mathbb{R}^2?$
My attempt : I think No .Take $r: \mathbb{R}^2 \to \mathbb{R} $ and defined by $$r(a,b)=b-h(a)$$
since $ b-h(a)=0 \implies (a,b)= r^{-1}(\{0\})$
Thus $\Gamma(h) =r^{-1}(\{0\})$
$(a,b)$ is open in $\mathbb{R}^2$
This implies $\Gamma(h)$ is open in $\mathbb{R}^2$