Motivated from my previous comment, we have a Cholesky decomposition $M = A^{\mathsf{T}}A$, where
$$ A = \begin{pmatrix}
1 & \rho & \rho^2 & \cdots & \rho^{n-1} \\
0 & \gamma & \gamma \rho & \cdots & \gamma \rho^{n-2} \\
0 & 0 & \gamma & \dots & \gamma \rho^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & \gamma
\end{pmatrix} $$
and $\gamma = \sqrt{1-\rho^2}$. For a proof, note that
$$ A_{ij} = \rho^{j-i} (\mathbf{1}_{\{i=1\}} + \gamma \mathbf{1}_{\{i > 1\}} ) \mathbf{1}_{\{i \leq j \}}. $$
Then
\begin{align*}
[A^{\mathsf{T}}A]_{ij}
= \sum_{k} A_{ki}A_{kj}
&= \sum_{k} \rho^{i+j-2k} (\mathbf{1}_{\{k=1\}} + \gamma \mathbf{1}_{\{k > 1\}} )^2 \mathbf{1}_{\{k \leq \min\{i,j\} \}} \\
&= \sum_{k} \rho^{i+j-2k} (\rho^2 \mathbf{1}_{\{k=1\}} + 1-\rho^2 ) \mathbf{1}_{\{k \leq \min\{i,j\} \}} \\
&= \rho^{i+j} + (1-\rho^2) \sum_{k=1}^{\min\{i,j\}} \rho^{i+j-2k} \\
&= \rho^{i+j - 2\min\{i,j\}} \\
&= \rho^{|i - j|},
\end{align*}
which is precisely $M_{ij}$.