Let
$${ A = {\begin{pmatrix} 2 &0 &0 &0 \\ -1 &1 &0 &0 \\ 0 &-1 &0 &-1 \\ 1 &1 &1 &2 \end{pmatrix}} . }$$
The goal is to find a Jordan normal form matrix similar to ${ A . }$ We can follow the procedure as in the proof here.
Note that
$${ \det(tI - A) = (t-2) (t-1) ^3 . }$$
Hence ${ 1, 2 }$ are the eigenvalues of ${ A . }$
Consider the eigenvalue ${ 1 . }$ Consider the powers
$${ (A - 1I) , (A - 1I) ^2, \ldots }$$
Note that the powers
$${ (A - 1I) = {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} , }$$
$${ {\begin{aligned} &\, (A - 1 I) ^2 \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}}, \end{aligned}} }$$
$${ {\begin{aligned} &\, (A - 1 I) ^3 \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}} \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}}, \end{aligned}} }$$
$${ {\begin{aligned} &\, (A - 1 I) ^4 \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}} \\ = &\, {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}}, \end{aligned}} }$$
and so on.
Hence the stabilized subspaces
$${ {\begin{aligned} &\, \mathcal{K} := \text{ker}((A - 1I) ^2) = \text{ker}((A - 1I) ^3) = \ldots \\ &\, \mathcal{I} := \text{im}((A - 1I) ^2) = \text{im}((A - 1I) ^3) = \ldots \end{aligned}} }$$
Hence
$${ {\begin{aligned} &\, \mathcal{K} = \text{span}(e _2, e _3, e _4), \\ &\, \mathcal{I} = \text{span} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} . \end{aligned}} }$$
Note that by row reduction, the kernel
$${ \text{ker}(A - 1 I) = \text{span} \left\lbrace \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\rbrace . }$$
We can study the action of ${ (A - 1I) \vert _{\mathcal{I}} }$ on ${ \mathcal{I} . }$
Note that
$${ (A - 1I) \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} . }$$
Hence the Jordan decomposition of ${ \mathcal{I} }$ with respect to ${ (A - 1I) \vert _{\mathcal{I}} }$ is
$${ \boxed{ \mathcal{I} = \text{span} \, \mathscr{B} _{A - 1I} \left( \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} , 1 \right) }. }$$
We can study the action of ${ T := (A - 1I) \vert _{\mathcal{K}} }$ on ${ \mathcal{K}. }$
Note that
$${ {\begin{aligned} &\, \text{im}(T) \\ = &\, \text{im}((A - 1I) \vert _{\mathcal{K}}) \\ = &\, \left\lbrace {\begin{pmatrix} 1 &0 &0 &0 \\ -1 &0 &0 &0 \\ 0 &-1 &-1 &-1 \\ 1 &1 &1 &1 \end{pmatrix}} \begin{pmatrix} 0 \\ x _2 \\ x _3 \\ x _4 \end{pmatrix} : x _2, x _3, x _4 \in \mathbb{C} \right\rbrace \\ = &\, \left\lbrace \begin{pmatrix} 0 \\ 0 \\ - x _2 - x _3 - x _4 \\ x _2 + x _3 + x _4 \end{pmatrix} : x _2, x _3, x _4 \in \mathbb{C} \right\rbrace \\ = &\, \text{span} \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} . \end{aligned}} }$$
We can study the action of ${ T \vert _{\text{im}(T)} }$ on ${ \text{im}(T) . }$
Note that
$${ (A - 1I) \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} . }$$
Hence the Jordan decomposition of ${ \text{im}(T) }$ with respect to ${ T \vert _{\text{im}(T)} }$ is
$${ \text{im}(T) = \text{span} \, \mathscr{B} _{A - 1I} \left(\begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} , 0 \right) . }$$
We can pick a ${ v \in \mathcal{K} }$ such that ${ T(v) = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} . }$
For example, ${ v := e _2 }$ works.
Hence consider
$${ {\begin{aligned} &\, \mathscr{B} _{A - 1I} (v, 0) \\ = &\, \mathscr{B} _{A - 1I} (e _2, 0) \\ = &\, \left( e _2, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right) . \end{aligned}} }$$
We can pick a ${ z _1 \in \text{ker}(T) }$ such that ${ ( \mathscr{B} _{A - 1I} (v, 0); z _1) }$ is a basis of ${ \mathcal{K} . }$
For example, ${ z _1 := \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} }$ works.
Hence the Jordan decomposition of ${ \mathcal{K} }$ with respect to ${ (A - 1I) \vert _{\mathcal{K}} }$ is
$${ \boxed{\mathcal{K} = \text{span} \, \mathscr{B} _{A - 1I} \left( e _2, 0 \right) \oplus \text{span} \, \mathscr{B} _{A - 1I} \left( \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, 0 \right)} . }$$
Hence the Jordan decomposition of ${ \mathbb{C} ^4 = \mathcal{K} \oplus \mathcal{I} }$ with respect to ${ (A - 1I) }$ is
$${ \boxed{\mathbb{C} ^4 = \text{span} \, \mathscr{B} _{A - 1I} \left( e _2, 0 \right) \oplus \text{span} \, \mathscr{B} _{A - 1I} \left( \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, 0 \right) \oplus \text{span} \, \mathscr{B} _{A - 1I} \left( \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} , 1 \right) } . }$$
Verification:
Consider the basis
$${ {\begin{aligned} \mathscr{B} := &\, \left( e _2 , (A - 1I) e _2 ; \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} ; \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right) \\ = &\, \left( \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} ; \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} ; \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right) . \end{aligned}} }$$
Note that
$${ (A - 1I) \mathscr{B} = \mathscr{B} \begin{pmatrix} 0 &0 &0 &0 \\ 1 &0 &0 &0 \\ 0 &0 &0 &0 \\ 0 &0 &0 &1 \end{pmatrix} , }$$
that is
$${ A \mathscr{B} = \mathscr{B} \begin{pmatrix} 1 &0 &0 &0 \\ 1 &1 &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &2 \end{pmatrix} . }$$
Hence a Jordan normal form matrix similar to ${ A }$ is
$${ \boxed{A \sim \begin{pmatrix} 1 &0 &0 &0 \\ 1 &1 &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &2 \end{pmatrix} } . }$$