For $a,b \in\mathbb{R}$, some $C_\alpha>0$, \begin{align*} &\big ||a+b|^\alpha - |a|^\alpha \big |\leq|b|^\alpha,&\quad \text{for }\alpha\leq 1,\\\\ &\big ||a+b|^\alpha - |a|^\alpha \big |\leq C_\alpha\big(|a|^{\alpha-1}+|b|^{\alpha-1} \big)|b|, &\quad \text{for }\alpha>1 \end{align*} I kindly ask for hints how to prove these inequalities hold true. I could just notice that when $|a+b|^\alpha\geq|a|^\alpha$, then $|a+b|^\alpha\leq|a|^\alpha+|b|^\alpha$, but unfortunately I have no idea of how to e.g. apply the knowledge about the polynomial/exponential function $c^\alpha=e^{\alpha\log c}$ or something else.
Thank you.