Consider the following function $f:\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} $:
$$f(x):=\alpha\left( |x-y|^{\alpha-2}(x-y)-|x-z|^{\alpha-2}(x-z) \right)$$
Where $\alpha >0,\alpha \neq 1$. I'm trying to show that $|f|>0$ as long as $y\neq z$, $x\neq y$, $x\neq z$.
We have $$|f (x)|^2=$$
$$|x-y|^{2\alpha-2} -2|x-y|^{\alpha-2}|x-z|^{\alpha-2}\langle x-y,x-z\rangle +|x-z|^{2\alpha-2}$$
To simplify, denote $a=x-y$ and $b=x-z$. Then $$|f (x)|^2=|a|^{2\alpha-2} -2|a|^{\alpha-2}|b|^{\alpha-2}\langle a,b\rangle +|b|^{2\alpha-2}$$
To minimize this we need maximize $\langle a,b\rangle$ if its positive (and minimize $\langle a,b\rangle$ if it is negative). From Cauchy's inequality $$|\langle a,b\rangle|\leq |a||b|$$ and equality happens if and only if $$b=c a,$$ where $c$ is a scalar. In this case $$\langle a,b\rangle=c|a|^2.$$
The problem then reduces to minimize for $c>0$ the function $$c\mapsto |f (x)|^2=|a|^{2\alpha-2} -2c^{\alpha-1}|a|^{2\alpha-2} +c^{2\alpha-2}|a|^{2\alpha-2} =|a|^{2\alpha-2}(1-2c^{\alpha-1} +c^{2\alpha-2} ) =|a|^{2\alpha-2}(1-c^{\alpha-1})^2$$ which is strictly positive if and only if $a\neq 0 \Longleftrightarrow x\neq y$ and $c\neq 1 \Longleftrightarrow a\neq b\Longleftrightarrow x-y\neq x-z\Longleftrightarrow y\neq z$.
Is my argument correct?