I am reading chapter 3 of A First Course in Modular Forms but have troubles in Exercise 3.7.1 (c) and (d).
(c) Show that the $\Gamma_0^{\pm}(N)$-conjugacy class of $\gamma \in \Gamma_0(N)$ is the union of the $\Gamma_0(N)$ conjugacy classes of $\gamma$ and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \gamma \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Show that if $\gamma$ has order $4$ or $6$ then this union is disjoint.
(d) Let $\gamma = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix}$, an order-$4$ element of $\Gamma_0(5)$. Show that $\gamma$ is not conjugate to its inverse in $\Gamma_0(5)$.
Here let $\mathrm{GL}_2(\mathbb{Z})$ be the group of invertible $2 \times 2$ matrices with integer entries, $\mathrm{SL}_2(\mathbb{Z})$ the group of $2 \times 2$ matrices with integer entries and determinant $1$, and \begin{align*} \Gamma_0^{\pm}(N) &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{GL}_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \pmod{N} \right\} \\ \Gamma_0(N) &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \pmod{N} \right\}. \end{align*}
I have proved the first part of (c): the map \begin{align*} \left(\Gamma_0^{\pm}(N) \setminus \Gamma_0(N)\right) &\longrightarrow \Gamma_0(N) \\ \alpha &\longmapsto \alpha \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{align*} is a bijection, so \begin{align*} \left\{ \beta \gamma \beta^{-1}: \beta \in \Gamma_0^{\pm}(N) \setminus \Gamma_0(N) \right\} = \left\{ \alpha \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \gamma \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \alpha^{-1}: \alpha \in \Gamma_0(N) \right\}. \end{align*}
How to show the remaining parts? For part (d), I think one cannot apply (c) directly because (d) serves as an example of the following statement in P.93
The extended conjugacy class of $\gamma$ under $\Gamma_0^{\pm}(N)$ is not in general the union of the conjugacy class of $\gamma$ and $\gamma^{-1}$ under $\Gamma_0(N)$.