I have the following proof in my lecture notes:
Fix a sequence $w = (w_n)_{n \geq 1}$ witn $w \in \ell^{\infty}$. Then define $D_w: \ell^2\to \ell^2$ by: $$D_wx = (w_nx_n)_{n \geq 0},$$ Find the $\|D_w\|$
i) $\|D_w\| \le \|w\|_\infty$:
Let $x = (x_n)_{n \geq 1}$. $$\|D_wx\|_2^2 = \sum_{j \geq 1}|(D_wx)_j|^2 = \sum_{j \geq 1}|w_jx_j|^2 \le \sum_{j \geq 1}\|w\|_\infty^2|x_j|^2 = \|w\|^2_\infty \sum_{j \geq 1}|x_j|^2 = \|w\|_\infty^2\|x\|_2^2,$$ so that $\|D_wx\|_2 \le \|w\|_\infty\|x\|_2$. From this we get $\|D_w\| \le \|w\|_\infty$.
ii) $\|D_w\| \ge \|w\|_\infty$:
Since $\|w\|_\infty = \sup\limits_{j \ge 1} |w_j|$, by definition of $\sup$ $\forall \epsilon >0\space \exists j_{\epsilon} \in \mathbb{N} $ such that $|w_{j_{\epsilon}}|\ge \|w\|_{\infty} -\epsilon$
Taking $x=e_{j_{\epsilon}}$ which is the $j_{\epsilon}$-th canonical basis vector ($0$ everywhere except at the $j_{\epsilon}$-th position) , we have that $D_w(e_{j_{\epsilon}})=w_{j_{\epsilon}}e_{j_{\epsilon}}$ and $\|e_{j_{\epsilon}}\|=1$, so
$\forall \epsilon >0:$ $\frac{\|D_w(e_{j_{\epsilon}})\|_2}{\|e_{j_{\epsilon}}\|_2} = |w_{j_{\epsilon}}| > \|w\|_{\infty} -\epsilon$ ....(1)
Then because it is true $\forall \epsilon >0$, making epsilon go to zero:
$\|D_w\|=\sup\limits_{x \neq 0}\frac{\|D_w(x)\|_2}{\|x\|_2} \ge \|w\|_{\infty}$, then $\|D_w\| \ge \|w\|_\infty$ ....(2)
I am having trouble with the second part , I am not convinced how to go from (1) to (2). Since in (1) we are using a particular sequence but in (2) we have $x$. And when taking the limit for $\epsilon \to 0$ in (1) I don't know how the left side transforms to that of (2) Can someone please help filling in the missing details? Thanks.
I found this post "https://math.stackexchange.com/questions/1337896/norm-of-multiplication-operator-in-ell2-bbb-n-is-x-infty" , but is the same as mine and it is missing all the last-part details I am having trouble with