Given $n \times 1$ vectors $\mathbf{x}$ and $\mathbf{y}$, I need help determining the gradient
$$\nabla_{\mathbf{A}} \left( \mathbf{x}^{T} \left( \mathbf{A} + \mathbf{B} \right)^{-1} \mathbf{y} \right)$$
where $n \times n$ matrices $\mathbf{A}$ and $\mathbf{B}$ are symmetric and positive definite.
I don't believe the matrix cookbook lists this gradient, but it is related to this question. Also, if $\mathbf{A}$ and $\mathbf{B}$ are both symmetric positive definite matrices, then is the following true \begin{align} \frac{\partial \ln (\det(\mathbf{A} + \mathbf{B}))}{\partial \mathbf{A}} = (\mathbf{A} + \mathbf{B})^{-1} ? \end{align} This result is based on the answer to this question.