Determine the splitting field and its degree over $\mathbb{Q}$ for $x^4+2$
My attempt :Obviously,the splitting field of the polynomial $f(x)=x^4 +2$ is $\mathbb{Q}(\sqrt[4]{-2},i)$
So the splitting field of $f$ has degree $$[\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}]=[\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}(\sqrt[4]{-2})] \cdot [\mathbb{Q}(\sqrt[4]{-2}):\mathbb{Q}]$$
since $\sqrt[4]{-2}$ is a root of the irreducible polynomial $x^4+2$ over $\mathbb{Q}$, then $[\mathbb{Q}(\sqrt[4]{-2}):\mathbb{Q}]=4$.
Here im unable to find the value of $[\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}(\sqrt[4]{-2})]$.
My confusion: How to find the value of $[\mathbb{Q}(\sqrt[4]{-2},i):\mathbb{Q}(\sqrt[4]{-2})]?$