This is not the most direct approach but it does show where hypergeometric functions appear as mentioned by @DrSonnhardGraubner.
We write
$$
\begin{align}
\sum_{j=0}^n\binom{a+j}{b}
&=\sum_{j=0}^n\frac{\Gamma(a+1+j)}{\Gamma(b+1)\Gamma(a-b+1+j)}\\
&=\frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}\sum_{j=0}^n\frac{(a+1)_j}{(a-b+1)_j}\\
&=\frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}\sum_{j=0}^n\frac{(a+1)_j(1)_j}{(a-b+1)_j\,j!},
\end{align}
$$
where $(s)_n=\Gamma(s+n)/\Gamma(s)$ is the Pochhammer symbol and $(1)_n=n!$. The result is a partial hypergeometric series, which may be evaluated using DLMF 16.2.4 to give
$$
\sum_{j=0}^n\binom{a+j}{b}=\frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}\frac{(a+1)_n(1)_n}{(a-b+1)_n\,n!}{_3F_2}\left({-n,1,b-a-n\atop -n,-a-n};1\right).
$$
After some simplification
$$
\sum_{j=0}^n\binom{a+j}{b}=\frac{\Gamma(a+1+n)}{\Gamma(b+1)\Gamma(a-b+1+n)}{_2F_1}\left({1,b-a-n\atop -a-n};1\right).
$$
Gauss's hypergeometric theorem then permits us to write
$$
\sum_{j=0}^n\binom{a+j}{b}=\frac{\Gamma(a+1+n)}{\Gamma(b+1)\Gamma(a-b+1+n)}\frac{\Gamma(-a-n)\Gamma(-1-b)}{\Gamma(-a-n-1)\Gamma(b)},
$$
which can be further reduced to give a sum of two binomial coefficients.