Here is an exercise:
Suppose that $\{x_n\}$ is a sequence such that $\lim \limits_{n\to\infty}(x_n-x_{n-2})=0$. Show that:
$$\lim \limits_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0 $$
Thanks.
Here is an exercise:
Suppose that $\{x_n\}$ is a sequence such that $\lim \limits_{n\to\infty}(x_n-x_{n-2})=0$. Show that:
$$\lim \limits_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0 $$
Thanks.
Given a sequence $\langle x_n\rangle $ denote $\Delta x_n=x_{n+1}-x_n$.
Let $$a_n=x_n-x_{n-2}$$
Then $a_n\to 0$ and $a_{n+1}\to 0$ so $$\omega_n =a_{n+1}-a_n\to 0$$ Note that $\omega_n=\Delta x_{n}-\Delta x_{n-1}$
$$\lim\limits_{n\to \infty}\frac 1n\sum_{k=1}^n\omega_k=0$$
What is the above?
Hints:
Let $y_n=|x_n-x_{n-1}|$. Note that $|y_n-y_{n-1}|\le |x_n-x_{n-2}|$. Then $$ |\frac {x_n-x_{n-1}}{n}|=\frac{y_n}{n} \le \frac{|y_n-y_{n-1}|+|y_{n-1}-y_{n-2}|+\dots+|y_{N+1}-y_N|}{n}+\frac{y_N}{n} $$