3

Here is an exercise:

Suppose that $\{x_n\}$ is a sequence such that $\lim \limits_{n\to\infty}(x_n-x_{n-2})=0$. Show that:

$$\lim \limits_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0 $$

Thanks.

Pedro
  • 125,149
  • 19
  • 236
  • 403

2 Answers2

3

Given a sequence $\langle x_n\rangle $ denote $\Delta x_n=x_{n+1}-x_n$.

Let $$a_n=x_n-x_{n-2}$$

Then $a_n\to 0$ and $a_{n+1}\to 0$ so $$\omega_n =a_{n+1}-a_n\to 0$$ Note that $\omega_n=\Delta x_{n}-\Delta x_{n-1}$

By Cesàro,

$$\lim\limits_{n\to \infty}\frac 1n\sum_{k=1}^n\omega_k=0$$

What is the above?

Pedro
  • 125,149
  • 19
  • 236
  • 403
  • What is the Cesaro? I cannot find it in the link. –  Jun 12 '13 at 02:21
  • @Simple I am linking to a proof of the following: If $a_n\to \ell$ then $$\frac 1 n\sum_{k=1}^n a_k\to \ell$$ too. This is usually called "Cesàros Theorem" in honor to Ernesto Cesàro – Pedro Jun 12 '13 at 02:22
  • @Sanchez True. It has some "remainders", but they should be killed off by the $n^{-1}$. – Pedro Jun 12 '13 at 02:30
2

Hints:

Let $y_n=|x_n-x_{n-1}|$. Note that $|y_n-y_{n-1}|\le |x_n-x_{n-2}|$. Then $$ |\frac {x_n-x_{n-1}}{n}|=\frac{y_n}{n} \le \frac{|y_n-y_{n-1}|+|y_{n-1}-y_{n-2}|+\dots+|y_{N+1}-y_N|}{n}+\frac{y_N}{n} $$

Paul
  • 21,141