The equation below indicates expected value of negative binomial distribution. I need a derivation for this formula. I have searched a lot but can't find any solution. Thanks for helping :)
$$ E(X)=\sum_{x=r}^\infty x\cdot \binom {x-1}{r-1} \cdot p^r \cdot (1-p)^{x-r} =\frac{r}{p} $$
I have tried: \begin{align} E(X) & =\sum _{x=r} x\cdot \binom{x-1}{r-1} \cdot p^r \cdot (1-p)^{x-r} \\[8pt] & = \sum_{x=r}^\infty x \cdot \frac{(x-1)!}{(r-1)! \cdot ((x-1-(r-1))!} \cdot p^r \cdot (1-p)^{x-r} \\[8pt] & = \sum_{x=r}^\infty \frac{x!}{(r-1)!\cdot ((x-r)!} \cdot p^r \cdot (1-p)^{x-r} \\[8pt] \Longrightarrow & \phantom{={}} \sum_{x=r}^\infty r\cdot \frac{x!}{r!\cdot (x-r)!}\cdot p^r \cdot (1-p{)}^{x-r} \\[8pt] & = \frac{r}{p} \cdot \sum_{x=r}^\infty \frac{x!}{r!\cdot (x-r)!}\cdot p^{r+1}\cdot (1-p)^{x-r} \end{align}
If the power of $p$ in the last equation were not $r + 1,$ I can implement Newton Binomial. So It will be true. But I am stuck here.
\cdotinstead of\times. It makes it hard to read when there are crosses and $x$’s everywhere. – shoteyes Jun 21 '21 at 08:18