0

I need to prove that if $k\cdot a \equiv k\cdot b \ \ (mod \ n)$ then $a \equiv b\left( \mod \ \frac{n}{gcd(k,n)} \right)$

I tried to do this: $$ k(a-b)=s\cdot n \\ k=u\cdot \gcd(k,n) \wedge n=v\cdot \gcd(k,n) \ ; \gcd(u,v)=1 \\ u\cdot \gcd(k,n) \cdot (a-b)=s\cdot v \cdot \gcd(k,n) \\ u\cdot (a-b)=s\cdot v $$ and now I'm stuck, If anyone has some idea on how can I continue from this step or is there another way to start, I will be grateful!

Bill Dubuque
  • 282,220
JollyQ1
  • 63

1 Answers1

1

Now you have that $ua \equiv ub \pmod {v}.$ But $\gcd(u, v) = 1,$ and so $u^{-1}$ exists mod $v$. Multiply by it to get $a \equiv b \pmod{v}.$