Let $X_1,...,X_n \sim N(u; \sigma)$ Let $\tau$ be the .98 percentile, i.e. $P(X < \tau )$ = 0.98:
- Find the MLE of $\tau$:
- Find an expression for an approximate $1 - \alpha$ confidence interval for $\tau$.
My Attempt is as follows:
We know the MLE of mean and variance of a normal distribution is given by, $\displaystyle \mu_{mle}=\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_i$ and $\displaystyle \sigma^2_{mle}=\frac{1}{n}\sum_{i=1}^{n}(X_i - \bar{X})^2$
$\displaystyle P(X < \tau)=P(Z < \frac{\tau - \mu}{\sigma})=0.98$
From inverse normal distribution tables we know that when $\displaystyle P(Z < z)=0.98$ then $z=2.053749$.
i.e. $\displaystyle \frac{\tau - \mu}{\sigma}=2.053749$ or $\tau=2.053749 \sigma + \mu$.
Plugging in MLE values of $\mu, \sigma$, we have $\displaystyle \tau_{mle}= \bar{X} + 2.053749 \sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i - \bar{X})^2}$
We know that for a single sample, $\displaystyle P(X < \tau)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\tau} e^{-\frac{(x - \mu)^2}{2 \sigma^2}} dx$
Therefore, $\displaystyle f(X;\tau)= \frac{\partial}{\partial \tau} \bigg(\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\tau} e^{-\frac{(x - \mu)^2}{2 \sigma^2}} dx\bigg)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\tau - \mu)^2}{2 \sigma^2}}$.
The Fisher information of a single sample (from Wikipedia) is given by,
$\displaystyle E\bigg[\bigg(\frac{\partial}{\partial \tau} \log f(X; \tau)\bigg)^2 \bigg| \tau\bigg]$
Plug in $\displaystyle f(X;\tau)$ from above, we get,
$\displaystyle E\bigg[\bigg(\frac{\partial}{\partial \tau} \log \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\tau - \mu)^2}{2 \sigma^2}} \bigg)^2 \bigg| \tau \bigg] = E\bigg[ \frac{(\tau - \mu)^2}{\sigma^4}\bigg| \tau \bigg] = \frac{(\tau - \mu)^2}{\sigma^4}$
Hence, $\displaystyle I_n(\tau)= n\frac{(\tau-\mu)^2}{\sigma^4}$ which gives s.e.=$\displaystyle \sqrt{\frac{1}{I_n(\tau)}}=\sqrt{\frac{\sigma^4}{n(\tau - \mu)^2}}$
But from previous exercise, we know that, $\displaystyle \frac{\tau - \mu}{\sigma}=2.053749$, and taking a reciprocal of its square we get $0.237086$
Therefore, CI is $\displaystyle \tau_{mle} \pm Z_{\alpha/2} \frac{\sigma_{mle}}{\sqrt{0.237086n}}$
Alternative solution
We also know that Fisher information is the negative of expectation of second derivative as follows
$\displaystyle -E\bigg[\frac{\partial^2}{\partial \tau^2} \log f(X; \tau) \bigg| \tau\bigg]=E_{\tau}\bigg[\frac{1}{\sigma^2} \bigg| \tau \bigg]$
Hence $\displaystyle I_n(\tau) = \frac{n}{\sigma^2}$ which gives s.e.=$\displaystyle \sqrt{\frac{1}{I_n(\tau)}}=\frac{\sigma}{\sqrt{n}}$
Therefore, CI is $\displaystyle \tau_{mle} \pm Z_{\alpha/2} \frac{\sigma_{mle}}{\sqrt{n}}$
Why are the two results different?