$$\sum_{n=3}^\infty \frac{1}{\log^2 n}$$ diverges by using integral test.
Is this true?
$$\sum_{n=3}^\infty \frac{1}{\log^2 n}$$ diverges by using integral test.
Is this true?
Referring to the main result, the integral test goes like this, pick up the function $f(x)= \frac{1}{\ln(x)^2} $ and see this
$$ \int_{3}^{\infty}\frac{dx}{\ln(x)^2} = \int_{\ln(3)}^{\infty}\frac{e^y}{y^2}dy, $$
where the last integral is a divegent integral, since $\lim_{y\to \infty}\frac{e^y}{y^2}=\infty$.
Note: We used the change of variables $y=\ln(x)$ in the above integral.
For $n\ge 1$, $\ln(n)^2<n$ so this series diverges by comparison to $\sum 1/n$.