The question is simple, to prove that $\sum_{n=1}^\infty{\frac{2}{2n}-\frac{2}{2n+1}}=2-2\ln(2)$.
I did it by wirtting down some terms of the series, rearranging as follows:
$$\sum_{n=1}^\infty \frac{2}{2n}-\frac{2}{2n+1}$$ $$2\sum_{n=1}^\infty \frac{1}{2n}-\frac{1}{2n+1}$$ $$2\left[\frac 12 - \frac 13 + \frac 14 - \frac 15+ \frac 16- \frac 17+ \frac 18- \frac 19+ \ldots\right]$$ $$2\left[1-\left(1-\frac 12 + \frac 13 -\frac 14 +\frac 15-\frac 16+\frac 17-\frac 18+\frac 19-\ldots\right)\right]$$
and noticing that the series inside the round parenthesis corresponds to $$1-\frac 12 + \frac 13 -\frac 14 +\frac 15-\frac 16+\frac 17-\frac 18+\frac 19-\ldots=\ln(2)$$ follows that:
$$2[1-\ln(2)]=2-2\ln(2)$$
So what I'm wanting to clarify is if is there any other way to improve this answer, a more "elegant" way to come up to the infinite sum of the series.